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The objective of the present work is to investigate the boundary layer flow 
and heat transfer over a moving flat plate in the presence of a transverse 
magnetic field. Gyarmati’s variational principle developed on the 
thermodynamic theory of irreversible processes is employed to solve the 
problem numerically. The governing boundary layer equations are 
approximated as simple polynomial functions, and the functional of the 
variational principle is constructed. The Euler-Langrange equations are 
reduced to simple polynomial equations in terms of boundary layer 
thicknesses. The velocity and temperature as well as skin friction and heat 
transfer parameters are analysed for any given values of Prandtl number Pr, 
magnetic parameter M, Eckert number Ec, moving parameter Ɛ and n. The 
obtained numerical solutions are compared with known numerical solutions 
and the comparison is found to be satisfactory. 
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1. Introduction 

*The study of boundary layer flow of an 
incompressible electrically conducting viscous fluid 
on a moving surface has an important bearing on 
several technical applications, such as in metallurgy 
and chemical processes industries. Blasius (1908) 
was the first to investigate and presented a 
theoretical result for the boundary layer flow over a 
flat plate in a uniform stream. A numerical 
investigation of the classical Blasius for the equation 
flat plate problem was presented by Cortell (2005). 
Sakiadis (1961) considered the problem of forced 
convection along an isothermal moving plate. 
Erickson et al. (1966) extended this problem to 
study the temperature distribution in the boundary 
layer when the sheet is maintained at a constant 
temperature with suction or blowing. An 
experimental and theoretical treatment was made by 
Tsou et al. (1967). 

Ishak et al. (2011) studied the steady laminar 
boundary layer flow over a moving plate in moving 
fluid with convective surface boundary condition 
and in the presence of thermal radiation. In this 
problem they combine two problems (i.e.) Blasius 
flow and Sakiadis flow using the composite velocity 
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𝑈 = 𝑈𝑤 + 𝑈∞introduced by Afzal et al. (1933). By 
using this composite velocity, we are able to 
investigate the flow characteristics when both the 
plate and the fluid are in moving conditions. Kumari 
and Nath (2001) studied the problem of MHD 
boundary layer flow of a non-newtonian fluid over a 
continuously moving surface with a parallel free 
stream. Recently, Jat and Neemawat (2014) 
discussed MHD boundary layer flow and heat 
transfer over a moving non-isothermal flat plate. 

The object of the present paper is to study the 
boundary layer flow and heat transfer for an 
electrically conducting viscous fluid on a moving flat 
plate in the presence of a transverse magnetic field 
by using Gyarmati’s variational technique. This 
technique is one of the most general and exact 
variational technique in solving flow and heat 
transfer problems. Chandrasekar (2003) and 
Shanmugapriya and Chandrasekar (2008) already 
applied this technique for steady and unsteady heat 
transfer and boundary layer flow problems. 

2. Mathematical formulation 

The system of steady, two-dimensional, laminar 
boundary layer flow of a viscous incompressible 
electrically conducting fluid over a non-isothermal 
flat plate is considered. The x-axis is taken along the 
plate and the y-axis is normal to it. In this study it is 
assumed that plate has a constant velocity Uw, in the 
same or opposite direction to the free stream 𝑈∞. A 
uniform magnetic field of strength B0 is applied 
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normal to the x-axis. The magnetic Reynolds number 
is taken to be small, therefore the induced magnetic 
field is neglected. Under these assumptions, the 
boundary layer equations are Eqs. 1-3: 

 
𝜕𝑢

 𝜕𝑥
+

𝜕𝑣

𝜕𝑦
= 0                                                 (1) 

𝑢
𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑦
= 𝜗

𝜕2𝑢

𝜕𝑦2
−

𝜎𝑒𝐵0
2𝑢2

𝜌
                                                  (2) 

𝑢
𝜕𝑇

𝜕𝑥
+ 𝑣

𝜕𝑇

𝜕𝑦
= (

ҡ

𝜌𝑐𝑝
)

𝜕2𝑇

𝜕𝑦2
+ (

𝜇

𝜌𝑐𝑝
) (

𝜕𝑢

𝜕𝑦
)
2
+

𝜎𝑒𝐵0
2𝑢2

𝜌𝑐𝑝
                  (3) 

 
where u, v are the velocity components of the fluid in 
the x and y-directions respectively, T is the 
temperature of the fluid, Tw is the wall temperature, 
𝑇∞ is the free stream temperature, 𝜗 is the kinematic 

viscosity, 𝜌 is the fluid density,   is the thermal 
conductivity of the fluid, 𝑐𝑝 is the specific heat at 

constant pressure of the fluid, 𝜇 is the coefficient of 
viscosity, 𝜎𝑒  is the electrical conductivity, It is 
assumed that the wall temperature 𝑇𝑤  is greater 
than the free stream temperature 𝑇∞. 

The initial and boundary conditions of the system 
are (Eq. 4): 

 
𝑦 = 0 ⇒ 𝑢 = 𝑈𝑤, 𝑣 = 0, 𝑇 = 𝑇𝑤  
𝑦 → 0 ⇒ 𝑢 = 𝑈∞ (𝑐𝑜𝑛𝑠𝑡),  𝑇 → 𝑇∞ .                                    (4) 

   
The wall temperature 𝑇𝑤  and the free-stream 

temperature 𝑇∞ satisfy the power law (Eq. 5): 
 

𝑇𝑤 − 𝑇∞ = 𝐴𝑥𝑛                                                                     (5) 

3. Variational formulation of the problem 

The purpose of this analysis is to obtain the 
approximate numerical solution of irreversible 
thermodynamics problem by a variational technique. 
Gyarmati (1969, 1979) introduced a genuine 
variational principle called the “Governing Principle 
of Dissipative Processes” (GPDP) which is given in its 
universal form (Eq. 6):  

 
𝛿 ∫ [𝜎 −  − φ]

𝑉
𝑑𝑉 = 0.                                                (6) 

 
The principle Eq. 6 is valid for linear, quasi-linear 

and certain types of non-linear transport processes 
at any instant of time under constraints that the 
balance equations are satisfied. In Eq. 6, 𝜎 is the 
entropy production Ψ and Φ are dissipation 
potentials and V is the total volume of the 
thermodynamic system. In the Eq. 7, 

 
𝜌𝑎𝑖̇ + ∇. 𝑗𝑖⃗⃗ = 𝜎𝑖         (𝑖 = 1,2,3… . . 𝑓)                                     (7) 
 
 𝑗𝑖⃗⃗  is the flux and σi is the source density of the ith 
extensive transport quantity ai. σ can always be 
written in the bilinear form as Eq. 8: 

 

 𝜎 = ∑ 𝑗𝑖⃗⃗ . 𝑋𝑖
⃗⃗  ⃗ ≥ 0

𝑓
𝑖=1                                                  (8) 

 

where, 𝐽 𝑖  and 𝑋 𝑖  are fluxes and forces respectively. 
According to Onsager (1931a,b) linear theory the 
fluxes are linear functions, that are Eqs. 9 and 10: 
 

 𝑗𝑖⃗⃗  ⃗ = ∑ 𝐿𝑖𝑘
𝑓
𝑘=1 𝑋𝑘,

⃗⃗ ⃗⃗  ⃗    (𝑖 = 1,2,3… . . 𝑓)                                   (9) 

 
or alternatively 
 

𝑋𝑖
⃗⃗  ⃗ = ∑ 𝑅𝑖𝑘

𝑓
𝑘=1 𝐽𝑘,

⃗⃗⃗⃗     (𝑖 = 1,2,3… . . 𝑓).                                 (10) 
 
The constants Lik and Rik are conductivities and 

resistances respectively and they satisfy the 
reciprocal relations (Eq. 11): 

 
𝐿𝑖𝑘 = 𝐿𝑘𝑖  𝑎𝑛𝑑 𝑅𝑖𝑘 =  𝑅𝑘𝑖 , (𝑖, 𝑘 = 1,2,3, . . . 𝑓).                  (11) 

 
The matrices of Lik and Rik are mutual reciprocals. 

That is Eq. 12: 
 

 ∑ 𝐿𝑖𝑚𝑅𝑚𝑘
𝑓
𝑚=1 = ∑ 𝐿𝑚𝑘𝑅𝑖𝑚

𝑓
𝑚=1  = 𝛿𝑖𝑘        (𝑖, 𝑘 =

1,2,3… . . 𝑓)                                                                          (12) 
 
where, δik is the Kronecker delta. The local 
dissipation potentials Ψ and Φ are defined as Eqs. 13 
and 14:  
 

 (X⃗⃗ , X⃗⃗ ) = (1 2⁄ )∑ 𝐿𝑖𝑘𝑋𝑖,
⃗⃗⃗⃗ 𝑓

𝑖,𝑘=1 𝑋𝑘,
⃗⃗ ⃗⃗  ⃗ ≥ 0,                             (13) 

φ(J , J ) = (1 2⁄ )∑ 𝑅𝑖𝑘𝐽𝑖,⃗⃗⃗  𝑓
𝑖,𝑘=1 𝐽𝑘,

⃗⃗⃗⃗ ≥ 0,                                  (14) 

 

since in the case of transport processes 𝑋𝑖 
⃗⃗⃗⃗ can be 

generated as gradients of certain “Γ” variable, it is 
written as Eq. 15: 
 

𝑋 𝑖= ∇𝛤𝑖.                                                                                (15) 
 
The principle (Eq. 6) with the help of Eqs. 8, 11, 

13, 14 and 15, takes the form Eq. 16: 
 

 𝛿 ∫ [∑ 𝐽𝑖 ⃗⃗⃗  . ∇𝛤𝑖
𝑓
𝑖=1 − (1 2⁄ )∑ 𝐿𝑖𝑘∇𝛤𝑖 . ∇𝛤𝑘

𝑓
𝑖,𝑘=1 −

𝑉

 (1 2⁄ )∑ 𝑅𝑖𝑘𝐽𝑖 ⃗⃗⃗  . 𝐽𝑘 
⃗⃗⃗⃗ 𝑓

𝑖,𝑘=1 ]𝑑𝑉 = 0.                                          (16) 

 
The principle (Eq. 6) is also in energy picture as 

(Eq. 17): 
 

𝛿 ∫ [𝑇𝜎 − Ψ∗ − φ∗]
𝑉

𝑑𝑉 = 0.                                              (17) 

 
here, 𝑇𝜎 is the energy dissipation and the dissipation 
potentials Ψ∗ and Φ∗= are given by Eq. 18: 
 
Ψ∗= T Ψ and Φ∗= TΦ.                                              (18) 

 
It is found that GPDP in energy picture given by 

Eq. 17 is always advantageous for dealing with 
thermo hydrodynamic systems. This variational 
principle has been already applied for various 
dissipative systems and was established as the most 
general and exact principle of macroscopic 
continuum physics.  

The balance equations of the system play a 
central role in the formulation of Gyarmati's 
variational principle and hence the governing Eqs. 1, 
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2 and 3 are written in the balance forms as Eqs. 19, 
20 and 21 

 
∇. 𝑉⃗ = 0, (𝑉⃗ = 𝑖𝑢 + 𝑗𝑣)                                                     (19) 

ρ(𝑉⃗ . ∇)𝑉⃗ + ∇. 𝑃̿ = 0,                                                           (20) 

ρcp(𝑉⃗ . ∇)𝑇 + ∇. 𝐽𝑞⃗⃗  ⃗ = 𝜇(𝑢𝑦
2) + (𝜎𝑒𝐵0

2𝑢2).                         (21) 

 
These equations represent the mass, momentum 

and energy balances respectively. In Eq. 20 𝑝̿ 
denotes the pressure tensor which can be 
decomposed as Eq. 22: 

 

𝑝̿ = 𝑝𝛿̿ +
°

𝑝̿𝑣𝑠                                                                       (22) 

 

where, p is the hydrostatic pressure, 𝛿̿ is the unit 

tensor, and 
°

𝑝̿𝑣𝑠 is the symmetrical part of the viscous 

pressure tensor, whose trace is zero. In the energy 
picture, the energy dissipation for the present 
system is given by Eq. 22: 
 
𝑇𝜎 = −𝐽𝑞(𝜕𝑙𝑛𝑇/𝜕𝑦) − 𝑃12(𝜕𝑢/𝜕𝑦).                                 (23) 

 
The heat flux 𝐽𝑞 and 𝑃12 the only component of 

momentum flux 
°

𝑝̿𝑣𝑠 satisfy the constitutive relations 

connecting the independent fluxes and forces as Eq. 
22: 

 

𝐽𝑞 = −𝐿𝜆 (
𝜕𝑙𝑛𝑇

𝜕𝑦
)   𝑎𝑛𝑑 𝑃12 = −𝐿𝑠 (

𝜕𝑢

𝜕𝑦
),                             (24) 

 
here, Lλ= λT and Ls= µ where λ and µ are the thermal 
conductivity and viscosity respectively. It is well 
known that lnT is the proper state variable instead of 
T when the principle assumes energy picture (Eq. 
19). With the help of Eq. 24 the dissipation potentials 
in the energy picture are found as follows (Eqs. 25 
and 26): 
 
Ψ∗ = (1 2⁄ )[𝐿𝜆(𝜕𝑙𝑛𝑇/𝜕𝑦)2 + 𝐿𝑠(𝜕𝑢/𝜕𝑦)2]                     (25) 
𝜑∗ =   (1 2⁄ )[𝑅𝜆𝐽𝑞

2 + 𝑅𝑠 𝑃12
2 ]                                              (26) 

 
where, 𝐿𝜆 = 𝑅𝜆

−1𝑎𝑛𝑑 𝐿𝑠 = 𝑅𝑠
−1. Using the Eqs. 23, 25 

and 26 Gyarmati’s variational principle in the energy 
picture (Eq. 17) is formulated as: 
 

𝛿 ∫ ∫

[
 
 
 
 −𝐽𝑞 (

𝜕𝑙𝑛𝑇

𝜕𝑦
) − 𝑃12 (

𝜕𝑢

𝜕𝑦
) −

(
𝐿𝜆

2
) (

𝜕𝑙𝑛𝑇

𝜕𝑦
)
2
− (

𝐿𝑠

2
) (

𝜕𝑢

𝜕𝑦
)
2
−

(
𝑅𝜆

2
) 𝐽𝑞

2 − (
𝑅𝑠

2
)𝑃12

2
]
 
 
 
 

∞

0

𝑙

0
𝑑𝑦𝑑𝑥 = 0,             (27) 

 
in which ‘l’ is the representative length of the 
surface. 

4. Solution procedure 

The velocity and temperature fields inside the 
respective boundary layers are approximated as a 
fourth degree polynomial function: 

 

(𝑢−𝑈𝑤)

(𝑈∞−𝑈𝑤)
=

2𝑦

𝑑1
−

2𝑦3

𝑑1
3 +

𝑦4

𝑑1
4  , (𝑦 < 𝑑1)  

𝑢 = 𝑈∞ , (𝑦 ≥ 𝑑1)   
(𝑇−𝑇∞)

 (𝑇0−𝑇∞)
= 𝜃 = 1 −

2𝑦

𝑑2
+

2𝑦3

𝑑2
3 +

𝑦4

𝑑2
4  , (𝑦 < 𝑑2)  

 𝑇 = 𝑇∞ , (𝑦 ≥ 𝑑2)                                                               (28) 
 
where, d1 and d2 are hydrodynamical and thermal 
boundary layer thicknesses respectively. The 
velocity and thermal profiles (Eq. 28) satisfy the 
following compatibility conditions (Eq. 29):  
 

𝑦 = 0; 𝑢 = 𝑈𝑤, 𝑣 = 0,
𝜕𝑇

𝜕𝑦
= 0(𝑠𝑚𝑜𝑜𝑡ℎ𝑓𝑖𝑡),

𝜕2𝑢

𝜕𝑦2 = 0,  

𝑦 = 𝑑1; 𝑢 = 𝑈∞,  
𝜕𝑢

𝜕𝑦
= 0(𝑠𝑚𝑜𝑜𝑡ℎ𝑓𝑖𝑡),

𝜕2𝑢

𝜕𝑦2 = 0, 

𝑦 = 𝑑2; 𝑇 = 𝑇∞,  
𝜕𝑇

𝜕𝑦
= 0(𝑠𝑚𝑜𝑜𝑡ℎ𝑓𝑖𝑡),

𝜕2𝑇

𝜕𝑦2
= 0.                  (29) 

 
Using the boundary conditions (Eq. 29), the 

transverse velocity component v is obtained from 
the mass balance Eq. 1 as Eq. 30:  

 

 𝑣 = (𝑈∞ − 𝑈𝑤) [
𝑦2

𝑑1
2 −

3𝑦4

2𝑑1
4 +

4𝑦5

5𝑑1
5] 𝑑1

′ .                                  (30) 

 
To formulate Gyarmati's variational principle the 

velocity and temperature functions (Eq. 28) are 
substituted in the momentum and energy balance 
Eqs. 2 and 3, and on direct integration with respect 
to y with the help of smooth fit boundary conditions 

 
𝜕𝑢

𝜕𝑦
= 0 and  

𝜕𝑇

𝜕𝑦
= 0 the fluxes P12 and Jq are obtained 

respectively as given below (Eq. 31): 
 

−
𝑃12

𝐿𝑠
= [

(𝑈∞−𝑈𝑤)2𝑑1
′

𝜗
] [0.11746031 −

2𝑦3

3𝑑1
3  +

7𝑦5

5𝑑1
5 −

11𝑦6

15𝑑1
6 −

3𝑦7

7𝑑1
7 +

2𝑦8

5𝑑1
8 −

4𝑦9

45𝑑1
9] + [

𝑈𝑤(𝑈∞−𝑈𝑤)𝑑1
′

𝜗
] [0.3    −

𝑦2

𝑑1
2 +

3𝑦4

2𝑑1
4  +

4𝑦5

5𝑑1
5]  +

[
(𝑈∞−𝑈𝑤) 𝜎𝑒𝐵0  

2

𝜗𝜌
] [−0.7𝑑1 +

𝑦2

𝑑1
2 
−

𝑦4

2𝑑1
4 +

𝑦5

5𝑑1
5] +

[
  𝜎𝑒𝐵0  

2 𝑈𝑤 

𝜗𝜌
] [−𝑑1 + 𝑦], (0 ≤ 𝑦 ≤ 𝑑1)                                   (31) 

−
𝐽𝑞

𝐿𝜆
= [

𝑛𝑃𝑟(𝑈∞−𝑈𝑤)(𝑇𝑤−𝑇∞)

𝜗𝑥
] [−0.7𝑑1 + 0.86667

𝑑1
2

𝑑2 
−

0.47857
𝑑1

4 

𝑑2
3 + 0.19444

𝑑1
5 

𝑑2
4 +

𝑦2

𝑑1 
−

4𝑦3

3𝑑1𝑑2
+

4𝑦5

5𝑑1𝑑2
3 −

𝑦6

3𝑑1𝑑2
4 −

𝑦4

2𝑑1
3 +

4𝑦5

5𝑑1
3𝑑2

−
4𝑦7

7𝑑1
3𝑑2

3 +
𝑦8

4𝑑1
3𝑑2

4 +
𝑦5

5𝑑1
4 −

𝑦6

3𝑑1
4𝑑2

+
𝑦8

4𝑑1
4𝑑2

3 −
𝑦9

9𝑑1
4𝑑2

4] +

[
𝑃𝑟(𝑈∞−𝑈𝑤)(𝑇𝑤−𝑇∞)

𝜗
] 𝑑2

′ [−0.8666
𝑑1

2 

𝑑2
2 + 1.43571

𝑑1
4 

𝑑2
4 −

0.77778
𝑑1

5 

𝑑2
5 +

4𝑦3

3𝑑1𝑑2
2 −

12𝑦5

5𝑑1𝑑2
4 +

4𝑦6

3𝑑1𝑑2
5  −

4𝑦5

5𝑑1
3𝑑2

2 +
12𝑦7

7𝑑1
3𝑑2

4 −
𝑦8

𝑑1
3𝑑2

5 +

𝑦6

3𝑑1
4𝑑2

2 −
3𝑦8

4𝑑1
4𝑑2

4 +
4𝑦9

9𝑑1
4𝑑2

5] + [
𝑃𝑟(𝑈∞−𝑈𝑤)(𝑇𝑤−𝑇∞)

𝜗
] 𝑑1

′ [0.33333
𝑑1

 

𝑑2
−

0.51429
𝑑1

3 

𝑑2
3 + 0.27222

𝑑1
4 

𝑑2
4 −

2𝑦3

3𝑑1
2𝑑2

+
6𝑦5

5𝑑1
2𝑑2

3 −
2𝑦6

3𝑑1
2𝑑2

4 +

3𝑦5

5𝑑1
4𝑑2

−
9𝑦7

7𝑑1
4𝑑2

3 +
3𝑦8

4𝑑1
4𝑑2

4 −
4𝑦6

15𝑑1
5𝑑2

+
3𝑦8

5𝑑1
5𝑑2

3 −
16𝑦9

45𝑑1
4𝑑2

4] +

[
𝑛𝑃𝑟𝑈𝑤(𝑇𝑤−𝑇∞)

𝜗𝑥
] [−𝑑1 +

𝑑1
2 

𝑑2
−

𝑑1
4 

2𝑑2
3 +

𝑑1
5 

5𝑑2
4 + 𝑦 −

𝑦2 

𝑑2
+

𝑦4 

2𝑑2
3 −

𝑦5 

5𝑑2
4] + [

𝑃𝑟𝑈𝑤(𝑇𝑤−𝑇∞)

𝜗
] 𝑑2

′ [−
𝑑1

2 

𝑑2
2 +

3𝑑1
4 

2𝑑2
4 −

4𝑑1
5 

5𝑑2
4 +

𝑦2 

𝑑2
2 −

3𝑦4 

2𝑑2
4 +

4𝑦5 

5𝑑2
5] − [

𝑃𝑟(𝑈∞−𝑈𝑤)2

𝑐𝑝
] [−

1.48571

𝑑1
+

4𝑦  

𝑑1
2 +

36𝑦5

5𝑑1
6 +

16𝑦7

7𝑑1
8 −

24𝑦3

3𝑑1
4 +

16𝑦4

4𝑑1
5 −

48𝑦6

6𝑑1
7 ] −

[
𝑃𝑟 𝜎𝑒𝐵0  

2 (𝑈∞−𝑈𝑤)2

𝜗𝜌𝑐𝑝
] [−0.58284𝑑1 +

4𝑦3 

3𝑑1
2 +

4𝑦7 

7𝑑1
6 +

𝑦9 

9𝑑1
8 −

8𝑦5 

5𝑑1
4 +

4𝑦6 

6𝑑1
5 −

4𝑦8 

8𝑑1
7] − [

𝑃𝑟 𝜎𝑒𝐵0  
2 𝑈𝑤

2

𝜗𝜌𝑐𝑝
] [𝑦 − 𝑑1] −
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[
𝑃𝑟 𝜎𝑒𝐵0  

2 𝑈𝑤(𝑈∞−𝑈𝑤)

𝜗𝜌𝑐𝑝
] [−1.4𝑑1 +

2𝑦2 

𝑑1
−

𝑦4 

𝑑1
3 +

2𝑦5 

5𝑑1
4] , (0 ≤ 𝑦 ≤

𝑑1); 𝑃𝑟 ≤ 1                                                             (32) 
 

−
𝐽𝑞

𝐿𝜆
= [

𝑛𝑃𝑟(𝑈∞−𝑈𝑤)(𝑇𝑤−𝑇∞)

𝜗𝑥
] [−0.3𝑑2 + 𝑦 −

𝑦2

𝑑2 
+

𝑦4 

2𝑑2
3 −

𝑦5 

5𝑑2
4] +

[
𝑃𝑟𝑈∞(𝑇𝑤−𝑇∞)

𝜗
] [−0.3 +

𝑦2 

𝑑2
2 −

3𝑦4 

2𝑑2
4 +

4𝑦5

5𝑑1
5  
] + [

𝑃𝑟(𝑈∞−𝑈𝑤)2

𝑐𝑝
] [

4𝑑2
 

𝑑1
2 +

8𝑑2
3 

𝑑1
4 −

4𝑑2
4 

𝑑1
5 −

36𝑑2
5 

𝑑1
6 +

8𝑑2
6 

𝑑1
7 −

16𝑑2
7 

7𝑑1
8 +

4𝑦  

𝑑1
2 −

8𝑦3 

𝑑1
4 +

4𝑦4 

𝑑1
5 +

36𝑦5 

5𝑑1
6 −

8𝑦6 

𝑑1
7 +

16𝑦7 

7𝑑1
8 ] − [

𝑃𝑟 𝜎𝑒𝐵0  
2 (𝑈∞−𝑈𝑤)2

𝜗𝜌𝑐𝑝
] [

−4𝑑2
3 

3𝑑1
2 +

8𝑑2
5 

5𝑑1
4 −

2𝑑2
6 

3𝑑1
5 −

4𝑑2
7 

7𝑑1
6 +

𝑑2
8 

2𝑑1
7 −

𝑑2
9 

9𝑑1
8 +

4𝑦3 

3𝑑1
2 +

4𝑦7 

7𝑑1
6 +

𝑦9 

9𝑑1
3 −

8𝑦5 

5𝑑1
4 +

2𝑦6 

3𝑑1
5 −

𝑦8 

2𝑑1
7] −

[
𝑃𝑟 𝜎𝑒𝐵0  

2 𝑈𝑤
2

𝜗𝜌𝑐𝑝
] [𝑦 − 𝑑2] − [

𝑃𝑟 𝜎𝑒𝐵0  
2 𝑈𝑤(𝑈∞−𝑈𝑤)

𝜗𝜌𝑐𝑝
] [

−2𝑑2
2 

𝑑1
+

𝑑2
4 

𝑑1
3 −

2𝑑2
5 

5𝑑1
4 +

2𝑦2 

𝑑1
−

𝑦4 

𝑑1
3 +

2𝑦5 

5𝑑1
4] , (𝑑1 ≤ 𝑦 ≤ 𝑑2); 𝑃𝑟 ≤ 1                (33) 

−
𝐽𝑞

𝐿𝜆
= [

𝑛𝑃𝑟(𝑈∞−𝑈𝑤)(𝑇𝑤−𝑇∞)

𝜗𝑥
] [−0.13333

𝑑2
2

𝑑1 
+ 0.02143

𝑑2
4 

𝑑1
3 −

0.00556
𝑑2

5 

𝑑1
4 +

𝑦2

𝑑1 
−

4𝑦3

3𝑑1𝑑2
+

4𝑦5

5𝑑1𝑑2
3 −

𝑦6

3𝑑1𝑑2
4 −

𝑦4

2𝑑1
3 +

4𝑦5

5𝑑1
3𝑑2

−

4𝑦7

7𝑑1
3𝑑2

3 +
𝑦8

4𝑑1
3𝑑2

4 +
𝑦5

5𝑑1
4 −

𝑦6

3𝑑1
4𝑑2

+
𝑦8

4𝑑1
4𝑑2

3 −
𝑦9

9𝑑1
4𝑑2

4] +

[
𝑃𝑟(𝑈∞−𝑈𝑤)(𝑇𝑤−𝑇∞)

𝜗
] 𝑑2

′ − 0.26667
𝑑2

𝑑1 
+

𝑑2
3 

𝑑1
3 −

𝑑2
4 

𝑑1
4 +

4𝑦3

3𝑑1𝑑2
2 −

12𝑦5

5𝑑1𝑑2
4 +

4𝑦6

3𝑑1𝑑2
5  −

4𝑦5

5𝑑1
3𝑑2

2 +
12𝑦7

7𝑑1
3𝑑2

4 −
𝑦8

𝑑1
3𝑑2

5 +
𝑦6

3𝑑1
4𝑑2

2 −
3𝑦8

4𝑑1
4𝑑2

4 +

4𝑦9

9𝑑1
4𝑑2

5] + [
𝑃𝑟(𝑈∞−𝑈𝑤)(𝑇𝑤−𝑇∞)

𝜗
] 𝑑1

′ [0.13333
𝑑2

2 

𝑑1
2 − 0.06429

𝑑1
4 

𝑑2
3 +

0.02222
𝑑2

5 

𝑑1
5 −

2𝑦3

3𝑑1
2𝑑2

+
6𝑦5

5𝑑1
2𝑑2

3 −
2𝑦6

3𝑑1
2𝑑2

4 +
3𝑦5

5𝑑1
4𝑑2

−
9𝑦7

7𝑑1
4𝑑2

3 +

3𝑦8

4𝑑1
4𝑑2

4 −
4𝑦6

15𝑑1
5𝑑2

+
3𝑦8

5𝑑1
5𝑑2

3 −
16𝑦9

45𝑑1
4𝑑2

4] + [
𝑛𝑃𝑟𝑈𝑤(𝑇𝑤−𝑇∞)

𝜗𝑥
] [−0.3𝑑2 +

𝑦 −
𝑦2 

𝑑2
+

𝑦4 

2𝑑2
3 −

𝑦5 

5𝑑2
4] + [

𝑃𝑟𝑈𝑤(𝑇𝑤−𝑇∞)

𝜗
] 𝑑2

′ [−0.3 +
𝑦2 

𝑑2
2 −

3𝑦4 

2𝑑2
4 +

4𝑦5 

5𝑑2
5] − [

𝑃𝑟(𝑈∞−𝑈𝑤)2

𝑐𝑝
] [

−4𝑑2

𝑑1
2 −

36𝑑2
5

5𝑑1
6 −

16𝑑2
7

7𝑑1
8 +

24𝑑2
3

3𝑑1
4 −

16𝑑2
4

4𝑑1
5 +

48𝑑2
6

6𝑑1
7 +

4𝑦

𝑑1
2 +

36𝑦5

5𝑑1
6 +

16𝑦7

7𝑑1
8 −

24𝑦3

3𝑑1
4 +

16𝑦4

4𝑑1
5 −

48𝑦6

6𝑑1
7 ] −

[
𝑃𝑟 𝜎𝑒𝐵0  

2 (𝑈∞−𝑈𝑤)2

𝜗𝜌𝑐𝑝
] [

−4𝑑2
3 

3𝑑1
2 −

4𝑑2
7 

7𝑑1
6 −

𝑑2
9 

9𝑑1
8 +

8𝑑2
5 

5𝑑1
4 −

4𝑑2
6 

6𝑑1
5 +

4𝑑2
8 

8𝑑1
7 +

4𝑦3 

3𝑑1
2 +

4𝑦7 

7𝑑1
6 +

𝑦9 

9𝑑1
8 −

8𝑦5 

5𝑑1
4 +

4𝑦6 

6𝑑1
5 −

4𝑦8 

8𝑑1
7] − [

𝑃𝑟 𝜎𝑒𝐵0  
2 𝑈𝑤

2

𝜗𝜌𝑐𝑝
] [𝑦 − 𝑑2] −

[
𝑃𝑟 𝜎𝑒𝐵0  

2 𝑈𝑤(𝑈∞−𝑈𝑤)

𝜗𝜌𝑐𝑝
] [

−2𝑑2
2 

𝑑1
+

𝑑2
4 

𝑑1
3 −

2𝑑2
5 

5𝑑1
4 +

2𝑑2
2 

𝑑1
−

𝑦4 

𝑑1
3 +

2𝑦5 

5𝑑1
4] , (0 ≤ 𝑦 ≤ 𝑑2); 𝑃𝑟 ≥ 1                      (34) 

 
The prime indicates the differentiation with 

respect to x. The above expressions for P12 and Jq are 
assumption that the Prandtl number 𝑃𝑟 ≤ 1  and 𝑃𝑟 ≥
1. 

With the help of Eqs. 31-34 and 28 the GPDP 
given by (Eq. 27) is formulated and the integration of 
the Lagrangian with respect to y is carried out. The 
variational principle, after simplification, is written 
in a simple form 

 

𝛿 ∫ 𝐿1
𝑙

0
[𝑑1, 𝑑2, 𝑑1

′ , 𝑑2
′ ]𝑑𝑥 = 0; 𝑃𝑟 ≤ 1  

𝑎𝑛𝑑 𝛿 ∫ 𝐿2
𝑙

0
[𝑑1 , 𝑑2, 𝑑1

′ , 𝑑2
′ ]𝑑𝑥 = 0; 𝑃𝑟 ≥ 1                        (35) 

 
where, L1 and L2 are the Lagrangian densities of the 
principle. 

The boundary layer thicknesses d1 and d2 are the 
independent parameters to be calculated and the 
Euler-Lagrange equations corresponding to these 
variational principles are: 

 
(𝜕𝐿1,2/𝜕𝑑1) − (𝑑/𝑑𝑥)(𝜕𝐿1,2/𝜕𝑑1

′ ) = 0  
𝑎𝑛𝑑 (𝜕𝐿1,2/𝜕𝑑2) − (𝑑/𝑑𝑥)(𝜕𝐿1,2/𝜕𝑑2

′ ) = 0                  (36) 

 
where, L1, 2 represents the Lagrangian densities L1 
and L2 respectively. The Eqs. 35 and 36 are second 
order ordinary differential equations in terms of d1 
and d2 respectively. We now introducing the non-
dimensional boundary layer thicknesses 𝑑1

∗ and 
𝑑2

∗  for solving these equations and are given by 
 
𝑑1 = 𝑑1

∗√𝜗𝑥/𝑈  

𝑎𝑛𝑑 𝑑2 = 𝑑2
∗√𝜗𝑥/𝑈                                                        (37) 

 
where, 𝑈 = 𝑈𝑤 + 𝑈∞ is the composite velocity. 

The Euler-Lagrange equations of the transformed 
principle assume the simple forms 

 
(𝜕𝐿1,2/𝜕𝑑1

∗) = 0 𝑎𝑛𝑑 (𝜕𝐿1,2/𝜕𝑑2
∗) = 0. (𝑃𝑟 ≤ 1; 𝑃𝑟 ≥ 1 ) 

                 (38) 
 
The coefficients of the Eq. 38 depend on the 
independent parameters 𝑃𝑟 , 𝑀, 𝐸𝑐, 𝜀, 𝑛 𝑎𝑛𝑑 𝑅𝑒 where 
𝑃𝑟 = 𝜇𝑐𝑝/𝑘 (Prandtl number) 𝑀 = 2 𝜎𝑒𝑥𝐵0  

2 /𝜌𝑈 

(Magnetic parameter), 𝐸𝑐 = 𝑈2/𝑐𝑝(𝑇𝑤 − 𝑇∞) (Eckert 

number), 𝜀 = 𝑈∞/𝑈 (Moving parameter) and 𝑅𝑒 =
𝑈𝑥/𝜗 (Reynolds number). 

5. Analysis of results 

After getting the non-dimensional boundary layer 
thicknesses 𝑑1

∗ and 𝑑2
∗  for the given values of 

𝑃𝑟,𝑀, 𝐸𝑐, 𝜀, 𝑛 𝑎𝑛𝑑 𝑅 the velocity and temperature 
profiles, velocity and temperature gradients, skin 
friction and heat transfer values are calculated with 
the help of the following relations respectively: 

 
η = 𝑦√𝑈/𝜗𝑥 ,                                                 (39) 

𝐶𝑓 = √
2

𝑅𝑒
 [(−𝑃12/𝐿𝑠)𝑦=0/𝑈√𝑈/2𝜗𝑥],                             (40) 

𝑁𝑢𝑙 = −
𝑥

(𝑇𝑤−𝑇∞)(−
𝐽𝑞

𝐿𝜆
)
𝑦= 0

 ,                                                    (41) 

𝐶𝑓 = √
2

𝑅𝑒
 (−𝑃12/𝐿𝑠)𝑦=0,                                                (42) 

𝑁𝑢𝑙 = −√𝑅𝑒/2 [(−
𝐽𝑞

𝐿𝜆
)
𝑦= 0

/(𝑇𝑤 − 𝑇∞)√𝑈/2𝜗𝑥].          (43) 

 

The results have been compared by work done by 
Blasius (1908), Sakiadis (1961), and Jat and 
Neemawat (2014). A good agreement is seen 
between the results. 

Figs. 1 and 2 represents the velocity profiles for 
different values of the magnetic parameter M when 
𝜀 = 0, 𝑛 = 0 𝑎𝑛𝑑 𝑛 = 2 From these figures, it can be 
easily observed that the thickness of the velocity 
boundary layer decreases for increasing values of M. 

The temperature profiles are shown in Figs. 3-8 
respectively for various values of parameters. From 
these figures, it may be noted that the thickness of 
the thermal boundary layer increase with increasing 
values of the magnetic parameter M and Eckert 
number Ec, whereas it decreases with increasing 
values of the Prandtl number Pr. 
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Fig. 1: Dimensionless velocity profile for different values 

of M when ε = 0 and n = 0 
 

 
Fig. 2: Dimensionless velocity profile for different values 

of M when ε = 0 and n = 2 

 

 
Fig. 3: Dimensionless temperature profile for different 

values of M when ε = 0.1, n = 0, Pr = 0.7 and Ec = 0.2 
 

 
Fig. 4: Dimensionless temperature profile for different 

values of M when ε = 0.2, n = 2, Pr = 0.7 and Ec = 0.1 
 

 
Fig. 5: Dimensionless temperature profile for different 
values of Pr when ε = 0.1, n = 0, M = 0.25 and Ec = 0.2 

 

 
Fig. 6: Dimensionless temperature profile for different 

values of Pr when ε = 0.2, n = 2, M = 0.5 and Ec = 0.1 
 

 
Fig. 7: Dimensionless temperature profile for different 
values of Ec when ε = 0.1, n = 0, M = 0.25 and Pr = 0.7 

 

 
Fig. 8: Dimensionless temperature profile for different 

values of Ec when ε = 0.5, n = 2, M = 0.5 and Pr = 0.7 
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From Figs. 9 and 10, it is found that the velocity 
gradient decreases with increasing values of the 
magnetic parameter M and the temperature gradient 
decreases for increasing values of M.  

 

 
Fig. 9: Velocity gradient for different values of M 

 

 
Fig. 10: Temperature gradient for different values of M 

when Pr = 0.7 

6. Conclusion 

This work deals with the effects of magnetic 
parameter, moving parameter, viscous dissipation,   
skin friction and heat transfer over a moving non-
isothermal flat plate. The governing partial 
differential equations are reduced to simple 
polynomial equations whose coefficients are of 
independent parameters 𝑃𝑟 , 𝑀, 𝐸𝑐, 𝜀, 𝑛 𝑎𝑛𝑑 𝑅𝑒. These 
equations offer a practicing engineer a rapid way of 
obtaining shear stress and heat transfer for any 
combinations of 𝑃𝑟 , 𝑀, 𝐸𝑐, 𝜀, 𝑛 𝑎𝑛𝑑 𝑅𝑒. The great 
advantage involved in the present technique is that 
the results are obtained with high order of accuracy 
and the amount of calculation is certainly less when 
compared with more conventional methods. Hence 
the practicing engineers and scientists can employ 
this unique approximate technique as a powerful 
tool for solving boundary layer flow and heat 
transfer problems.  
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